首页 > 汽车 >

技术丨详解三大硅碳负极包覆结构(5)

2018-07-22 19:02:40 网络整理 阅读:90 评论:0

Tao等采用相似的方法也制备出稳定的Si@void@C复合材料,循环100次后的比容量为780mA·h/g。碳负载量的优化发现,复合材料中碳负载量为63%时的比容量(780mA·h/g)高于碳负载量为72%时的比容量(690mA·h/g)。这表明要实现Si@void@C复合材料的最大容量,还需要对蛋黄-壳结构进行深入的优化设计。

Liu等以聚多巴胺为碳源合成出蛋黄-壳复合材料(Si@void@C)。在该结构中,硅内核和薄碳层之间预留了充足的空间,使硅在锂化膨胀时不破坏碳壳层,从而使复合材料表面能形成稳定的SEI膜。

这种Si@void@C在0.1C电流密度下,可逆容量高达2800mA·h/g,循环1000次后有74%的容量保持率以及99.84%的Coulomb效率。

近来,研究者将多壳层概念引入到硅碳蛋黄-壳结构设计中,以增强碳层的机械性能,提高材料抵抗硅体积膨胀应力的能力。

Sun等通过囊泡模板法制备出Si@void@SiO2材料,并在多孔SiO2壳层内外侧涂覆多糖,于惰性气氛下高温热解得到Si@void@C@SiO2@C,经HF刻蚀除去SiO2后,得到具有双壳层结构(Si@void@C@void@C)的蛋黄-壳型复合材料(Si@DC),见图B。

技术丨详解三大硅碳负极包覆结构(5)

双碳层的引入使材料具有更为优异的导电性能。在50mA/g电流密度下,Si@DC在循环80次后的放电比容量保持943.8mA·h/g,而硅/单壳层(Si@SC)和纯硅颗粒在循环80次后容量则分别降低至719.8和115.3mA·h/g。

Yang等采用Stöber法和热解法在硅纳米颗粒表依次包覆SiO2层和碳层,经HF选择性刻蚀,得到双壳层结构复合材料(Si@void@SiO2@void@C)。

该材料展现出优异的循环稳定性,在460mA/g电流密度下循环430次后,容量保持在956mA·h/g,容量保持率高达83%,而Si@C核壳材料在相同测试条件下,前10次循环容量衰减明显,循环430次后容量不足200mA·h/g。

相关文章